A two-metal ion mechanism operates in the hammerhead ribozyme-mediated cleavage of an RNA substrate.
نویسندگان
چکیده
Evidence for a two-metal ion mechanism for cleavage of the HH16 hammerhead ribozyme is provided by monitoring the rate of cleavage of the RNA substrate as a function of La3+ concentration in the presence of a constant concentration of Mg2+. We show that a bell-shaped curve of cleavage activation is obtained as La3+ is added in micromolar concentrations in the presence of 8 mM Mg2+, with a maximal rate of cleavage being attained in the presence of 3 microM La3+. These results show that two-metal ion binding sites on the ribozyme regulate the rate of the cleavage reaction and, on the basis of earlier estimates of the Kd values for Mg2+ of 3.5 mM and > 50 mM, that these sites bind La3+ with estimated Kd values of 0.9 and > 37.5 microM, respectively. Furthermore, given the very different effects of these metal ions at the two binding sites, with displacement of Mg2+ by La3+ at the stronger (relative to Mg2+) binding site activating catalysis and displacement of Mg2+ by La3+ at the weaker (relative to Mg2+) (relative to Mg2+) binding site inhibiting catalysis, we show that the metal ions at these two sites play very different roles. We argue that the metal ion at binding site 1 coordinates the attacking 2'-oxygen species in the reaction and lowers the pKa of the attached proton, thereby increasing the concentration of the attacking alkoxide nucleophile in an equilibrium process. In contrast, the role of the metal ion at binding site 2 is to catalyze the reaction by absorbing the negative charge that accumulates at the leaving 5'-oxygen in the transition state. We suggest structural reasons why the Mg(2+)-La3+ ion combination is particularly suited to demonstrating these different roles of the two-metal ions in the ribozyme cleavage reaction.
منابع مشابه
Interactions of the antibiotics neomycin B and chlortetracycline with the hammerhead ribozyme as studied by Zn2+-dependent RNA cleavage.
We have investigated the interactions of two antibiotics, neomycin B and chlortetracycline (CTC), with the hammerhead ribozyme using two Zn(2+) cleavage sites at U4 and A9 in its catalytic core. CTC-dependent inhibition of Zn(2+) cleavage was observed in all cases. In contrast, we unexpectedly observed acceleration of A9 cleavage by neomycin under low ionic strength conditions similar to those ...
متن کاملExplanation by the double-metal-ion mechanism of catalysis for the differential metal ion effects on the cleavage rates of 5'-oxy and 5'-thio substrates by a hammerhead ribozyme.
In a previous examination using natural all-RNA substrates that contained either a 5'-oxy or 5'-thio leaving group at the cleavage site, we demonstrated that (i) the attack by the 2'-oxygen at C17 on the phosphorus atom is the rate-limiting step only for the substrate that contains a 5'-thio group (R11S) and (ii) the departure of the 5' leaving group is the rate-limiting step for the natural al...
متن کاملDistinct reaction pathway promoted by non-divalent-metal cations in a tertiary stabilized hammerhead ribozyme.
Divalent ion sensitivity of hammerhead ribozymes is significantly reduced when the RNA structure includes appropriate tertiary stabilization. Therefore, we investigated the activity of the tertiary stabilized "RzB" hammerhead ribozyme in several nondivalent ions. Ribozyme RzB is active in spermidine and Na(+) alone, although the cleavage rates are reduced by more than 1,000-fold relative to the...
متن کاملRibozyme cleavage of a 2,5-phosphodiester linkage: mechanism and a restricted divalent metal-ion requirement.
The natural substrate cleaved by the hepatitis delta virus (HDV) ribozyme contains a 3',5'-phosphodiester linkage at the cleavage site; however, a 2',5'-linked ribose-phosphate backbone can also be cleaved by both trans-acting and self-cleaving forms of the HDV ribozyme. With substrates containing either linkage, the HDV ribozyme generated 2',3'-cyclic phosphate and 5'-hydroxyl groups suggestin...
متن کاملZinc-dependent cleavage in the catalytic core of the hammerhead ribozyme: evidence for a pH-dependent conformational change.
We have characterized a novel Zn2+-catalyzed cleavage site between nucleotides C3 and U4 in the catalytic core of the hammerhead ribozyme. In contrast to previously described divalent metal-ion-dependent cleavage of RNA, U4 cleavage is only observed in the presence of Zn2+. This new cleavage site has an unusual pH dependence, in that U4 cleavage products are only observed above pH 7.9 and reach...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 2 شماره
صفحات -
تاریخ انتشار 1998